Telegram Group & Telegram Channel
XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX [2024]

Одной из главных компонент обучения общего интеллекта будет обучающее распределение задач. На мой взгляд, оно не обязано быть сложным и высокоразмерным, главная необходимая характеристика - это высокое разнообразие задач. XLand-MiniGrid является движением именно в эту сторону.

Существует такая среда XLand, на которой тренировали AdA. Каждая задача представляла из себя случайную 3Д-комнату, на которой были разбросаны объекты. Агент управлялся от первого лица, получая изображение на вход. При создании задачи сэмплировался набор "правил" - то, как между собой взаимодействуют объекты, разбросанные по комнате. Например, если два определённых объекта касаются друг друга, то вместо них появляется определённый третий.

Несколько простых правил порождали ~10^40 возможных задач, на которых потом обучали мета-алгоритм. Авторы XLand-MiniGrid применили похожий подход, но вместо 3Д-комнаты используется небольшая 2Д-сетка, таким образом убирается лишняя сложность и уменьшается требуемый компьют. Сейчас самое время взглянуть на иллюстрацию.

Существует процедура генерации задачи - строится дерево "подзадач", каждая из которых - "получение" определённого объекта из полученных ранее (засчёт правил превращения). Финальная цель - получить объект в корне этого дерева. У дерева можно регулировать разнообразие и количество вершин, таким образом задавая сложность.

Среда реализована в JAX и позволяет эффективно гонять её на GPU, запуская много сред одновременно, что уменьшает вероятность нахождения боттлнека в симуляторе.

Минусом в этой среде, на мой взгляд, является не особо большое концептуальное разнообразие правил взаимодействия объектов в этой среде - по факту они все сводятся к нахождению рядом между собой 2 объектов, либо к держанию агентом объекта. Реальная ли эта проблема? Неясно, потому что ещё непонятно, насколько именно разнообразным должен быть класс задач, на котором мета-обучают интеллект.

Кажется, что эволюция обучающих сред должна происходить совместно с эволюцией мета-алгоритмов, и все они должны двигаться в сторону общего интеллекта. Под этим я имею ввиду, что необходим какой-то meta-RL-бенчмарк - задача, на котором не запускают мета-обучение, а только мета-тестируют итоговый обучающий алгоритм. Это бы позволило исследователям соревноваться на одном "лидерборде", экспериментируя с моделями и задачами.

Тем не менее, даже в рамках XLand-MiniGrid существует пространство для экспериментов с мета-лёрнингом, в рамках которого можно найти AGI-архитектуру, удовлетворяющую всем необходимым требованиям.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/215
Create:
Last Update:

XLand-MiniGrid: Scalable Meta-Reinforcement Learning Environments in JAX [2024]

Одной из главных компонент обучения общего интеллекта будет обучающее распределение задач. На мой взгляд, оно не обязано быть сложным и высокоразмерным, главная необходимая характеристика - это высокое разнообразие задач. XLand-MiniGrid является движением именно в эту сторону.

Существует такая среда XLand, на которой тренировали AdA. Каждая задача представляла из себя случайную 3Д-комнату, на которой были разбросаны объекты. Агент управлялся от первого лица, получая изображение на вход. При создании задачи сэмплировался набор "правил" - то, как между собой взаимодействуют объекты, разбросанные по комнате. Например, если два определённых объекта касаются друг друга, то вместо них появляется определённый третий.

Несколько простых правил порождали ~10^40 возможных задач, на которых потом обучали мета-алгоритм. Авторы XLand-MiniGrid применили похожий подход, но вместо 3Д-комнаты используется небольшая 2Д-сетка, таким образом убирается лишняя сложность и уменьшается требуемый компьют. Сейчас самое время взглянуть на иллюстрацию.

Существует процедура генерации задачи - строится дерево "подзадач", каждая из которых - "получение" определённого объекта из полученных ранее (засчёт правил превращения). Финальная цель - получить объект в корне этого дерева. У дерева можно регулировать разнообразие и количество вершин, таким образом задавая сложность.

Среда реализована в JAX и позволяет эффективно гонять её на GPU, запуская много сред одновременно, что уменьшает вероятность нахождения боттлнека в симуляторе.

Минусом в этой среде, на мой взгляд, является не особо большое концептуальное разнообразие правил взаимодействия объектов в этой среде - по факту они все сводятся к нахождению рядом между собой 2 объектов, либо к держанию агентом объекта. Реальная ли эта проблема? Неясно, потому что ещё непонятно, насколько именно разнообразным должен быть класс задач, на котором мета-обучают интеллект.

Кажется, что эволюция обучающих сред должна происходить совместно с эволюцией мета-алгоритмов, и все они должны двигаться в сторону общего интеллекта. Под этим я имею ввиду, что необходим какой-то meta-RL-бенчмарк - задача, на котором не запускают мета-обучение, а только мета-тестируют итоговый обучающий алгоритм. Это бы позволило исследователям соревноваться на одном "лидерборде", экспериментируя с моделями и задачами.

Тем не менее, даже в рамках XLand-MiniGrid существует пространство для экспериментов с мета-лёрнингом, в рамках которого можно найти AGI-архитектуру, удовлетворяющую всем необходимым требованиям.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/215

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Knowledge Accumulator from de


Telegram Knowledge Accumulator
FROM USA